반응형

https://www.acmicpc.net/problem/11401

 

11401번: 이항 계수 3

자연수 \(N\)과 정수 \(K\)가 주어졌을 때 이항 계수 \(\binom{N}{K}\)를 1,000,000,007로 나눈 나머지를 구하는 프로그램을 작성하시오.

www.acmicpc.net

 

 

[ 문제풀이 ]

 

이 문제를 풀기 전에 다음 글을 먼저 읽어보시는 걸 추천드립니다.

 

https://rudalsd.tistory.com/61?category=1064608 

 

[ 알고리즘 ] 페르마의 소정리(Fermat's little theorem)

페르마의 소정리(Fermat's little theorem)는 다음과 같이 정리할 수 있습니다. $a\geq 0$에 대하여 $a^{p}\equiv a($mod $p)$를 만족하고, 만약 $p$가 소수이고, $a$와 $p$가 서로소이면 $a^{p-1}\equiv 1($mod $p)$를 만족

rudalsd.tistory.com

 

1. 먼저 $\binom{N}{K}$는 다음과 같이 나타낼 수 있습니다.

 

$\binom{N}{K} = \frac{N!}{(N-K)!K!}$

 

2. 페르마의 소정리를 이용하여 mod $m$에서 어떤 수를 $a$로 나눈다는 뜻은 $a$의 역원을 곱한다는 뜻과 같습니다. 따라서 $m$이 소수일 때, $a^{m-1}\equiv 1($mod $m)$이고, $a\times a^{m-2}\equiv 1($mod $m)$이므로 mod $m$에서 $a$에 대한 곱셈의 역원은 $a^{m-2}$입니다.

 

따라서, 

 

$\frac{N!}{(N-K)!K!} \equiv N!\times ((N-K)!K!)^{m-2}($mod $m)$

 

이 됩니다.

 

3. 분모의 수로 나누는 방법 대신 $m-2$제곱한 값을 곱해주면 모듈러 연산 시 같은 결과가 나오는 것을 알 수 있습니다.

이때 $m$의 값이 $1,000,000,007$로 매우 크므로 분할 정복을 이용한 거듭제곱을 이용하여 문제를 풀어주면 됩니다.

 

[ 소스 코드 ]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#include<iostream>
#define ll long long
#define M 1000000007
 
using namespace std;
 
ll Fac[4000001];
 
ll p(int n, int k)
{
    if (k == 0return 1;
    if (k == 1return n;
 
    if (k % 2 == 0) {
        ll temp = p(n, k / 2);
        temp %= M;
 
        return (temp * temp) % M;
    }
    else {
        ll temp = p(n, k - 1);
        temp %= M;
 
        return (temp * n) % M;
    }
}
 
int main()
{
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    cout.tie(NULL);
 
    int N, K;
    cin >> N >> K;
 
    Fac[0= 1;
    Fac[1= 1;
 
    for (int i = 2; i <= N; i++) {
        Fac[i] = Fac[i - 1* i;
        Fac[i] %= M;
    }
 
    ll ans = Fac[N] * p((Fac[N - K] * Fac[K])%M, M - 2);
    ans %= M;
 
    cout << ans;
}
cs
반응형
반응형

https://www.acmicpc.net/problem/13977

 

13977번: 이항 계수와 쿼리

\(M\)개의 자연수 \(N\)과 정수 \(K\)가 주어졌을 때 이항 계수 \(\binom{N}{K}\)를 1,000,000,007로 나눈 나머지를 구하는 프로그램을 작성하시오.

www.acmicpc.net

 

 

[ 문제풀이 ]

 

이 문제를 풀기 전에 다음 글을 먼저 읽어보시는 걸 추천드립니다.

 

https://rudalsd.tistory.com/61?category=1064608 

 

[ 알고리즘 ] 페르마의 소정리(Fermat's little theorem)

페르마의 소정리(Fermat's little theorem)는 다음과 같이 정리할 수 있습니다. $a\geq 0$에 대하여 $a^{p}\equiv a($mod $p)$를 만족하고, 만약 $p$가 소수이고, $a$와 $p$가 서로소이면 $a^{p-1}\equiv 1($mod..

rudalsd.tistory.com

 

먼저 $\binom{N}{K}$는 다음과 같이 나타낼 수 있습니다.

 

$\binom{N}{K} = \frac{N!}{(N-K)!K!}$

 

그리고 페르마의 소정리를 이용하여 mod $m$에서 어떤 수를 $a$로 나눈다는 뜻은 $a$의 역원을 곱한다는 뜻과 같습니다. 따라서 $m$이 소수일 때, $a^{m-1}\equiv 1($mod $m)$이고, $a\times a^{m-2}\equiv 1($mod $m)$이므로 mod $m$에서 $a$에 대한 곱셈의 역원은 $a^{m-2}$입니다.

 

따라서, 

 

$\frac{N!}{(N-K)!K!} \equiv N!\times ((N-K)!K!)^{m-2}($mod $m)$

 

이 됩니다.

 

분모의 수로 나누는 방법 대신 $m-2$제곱한 값을 곱해주면 모듈러 연산 시 같은 결과가 나오는 것을 알 수 있습니다.

이 때 $m$의 값이 $1,000,000,007$로 매우 크므로 분할 정복을 이용한 거듭제곱을 이용하여 문제를 풀어주면 됩니다.

 

 

[ 소스 코드 ]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#include<iostream>
 
#define ll long long
#define MOD 1000000007
 
using namespace std;
 
ll fac[4000001];
 
int M, N, K;
 
ll pow(ll num, int p)        //분할 정복을 이용한 거듭제곱
{
    if (p == 0return 1;
    if (p == 1return num;
 
    if (p % 2 == 0) {
        ll temp = pow(num, p / 2);
        temp %= MOD;
        return (temp * temp) % MOD;
    }
    else {
        ll temp = pow(num, p - 1);
        temp %= MOD;
        return (num * temp) % MOD;
    }
}
 
int main()
{
    fac[0= 1;
 
    for (int i = 1; i <= 4000000; i++) {
        fac[i] = fac[i - 1* i;
        fac[i] %= MOD;
    }
 
    scanf("%d"&M);
 
    for (int i = 0; i < M; i++) {
        scanf("%d %d"&N, &K);        //페르마의 소정리
        ll ans = (fac[N] * pow((fac[N - K] * fac[K]) % MOD, MOD - 2)) % MOD;
        printf("%lld\n", ans);
    }
}
cs
반응형

+ Recent posts